Sorption kinetics and equilibria of organic pesticides in carbonatic soils from South Florida.
نویسندگان
چکیده
A batch reactor was used to determine sorption kinetic parameters (k2, F, and K*) and the equilibrium sorption coefficient (K). The two-site nonequilibrium (TSNE) batch sorption kinetics model was used to calculate the kinetic parameters. Two probe organic pesticides, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were studied using three carbonatic soils from South Florida (Chekika, Perrine, and Krome), one noncarbonatic soil from Iowa (Webster), and one organic soil (Lauderhill) from South Florida. Carbonatic soils contained more than 600 g kg(-1) CaCO3. Sorption is initially very fast up to 3 h and then slowly reaches equilibrium. All soil-chemical combinations reached sorption equilibrium after about 24 h and all sorption isotherms were linear. The sorption kinetics data were well described by the TSNE model for all soil-chemical combinations except for the marl soil data (Perrine-Atrazine), which were better described by the one-site nonequilibrium (OSNE) model. Diuron, with higher K, undergoes slower sorption kinetics than atrazine. The Lauderhill soil containing organic carbon (OC) of 450 g kg(-1) exhibited slowest sorption kinetics for both pesticides. An inverse relationship between k3 and K was observed for atrazine and diuron separately in Chekika, Webster, and Lauderhill soils but not in Perrine and Krome soils. The sorption kinetic parameters were used to distinguish the sorption behavior between atrazine and diuron and to identify differences between soils. Normalizing the sorption coefficient (K) to OC showed that atrazine and diuron had K oc values in carbonatic soils that were a third of reported literature values for noncarbonatic soils. Using existing literature K oc values in solute transport models will most likely underestimate the mobility of atrazine, diuron, and other neutral organic chemicals in carbonatic soils.
منابع مشابه
Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin.
Sorption of two s-triazines, atrazine and ametryn, by carbonatic soils, Histosols, Spodosols and Oxisols was examined. Linear isotherms were observed and sorption coefficients (K(d)) of both compounds were significantly lower (α = 0.05) onto carbonatic soils compared to non-carbonatic soils. Furthermore, among carbonatic soil types, the marl-carbonatic soils had the lowest sorption affinities. ...
متن کاملSorption, degradation and leaching of pesticides in soils amended with organic matter: A review
The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and m...
متن کاملA Quantitative LC-MS/MS Study of the Partitioning, Transport, and Fate of Pesticide Residues on Soil
Titration of pesticides onto sorption sites can determine sorption capacities on soils. Previous studies have tracked the sorption capacities and detailed kinetics of the uptake of atrazine and its decomposition byproduct hydroxyatrazine on different soils, including measurements made using LC-MS/MS. These studies have now been extended to explore sorption-desorption equilibria for a mixture of...
متن کاملThe kinetics of sorption by retarded diffusion into soil aggregate pores.
This study investigates time-dependent sorption of pesticides in soil aggregates. We tested if the sorption kinetics of pesticides in soil aggregates can be described by modeling diffusion into aggregates for a range of soils and pesticides. Our hypothesis is that the rate of sorption is negatively related to sorption strength due to retardated diffusion. Natural aggregates of 3-5 mm diameter w...
متن کاملImidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand
Imidacloprid (IMD) is a neonicotinoid pesticide soil-drenched to many crops to control piercing-sucking insects such as the Asian citrus psyllid (ACP). Neonicotinoids are persistent in the environment and transport analyses are helpful estimate leaching potential from soils that could result in groundwater pollution. The objective of this study was to analyze IMD breakthrough under saturated wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2006